Recommendations:

Please read the starter kit user manual (at least installation chapter 5), if available, and have a look at the FAQ at http://www.alpeslasers.ch/alfaq.pdf

WARNING: Operating the laser with longer pulses, shorter period, or higher voltage or current than specified in this document may cause damage and will result in loss of warranty, unless agreed upon with Alpes Lasers!

WARNING: Beware of the polarity of the laser. This laser has to be powered with negative bias on the laser contact (= bonding pad, corresponding to the label "laser" on the LLH) and the positive bias on the base contact (= submount, corresponding to the label "base" on the LLH).

![Support mounting for #sb101](image)

Figure 1: Support mounting for #sb101 (please note that the laser is connected to the DN pad drawn in blue)
Figure 2: peak voltage and avg power vs peak current (the solid squares indicate the maximum singlemode emitted power)

Figure 3: peak voltage and avg power vs peak current (including the multimode region)

Note: data taken with 50ns pulses, 2.5μs period.
Figure 4: peak current and avg power vs LDD voltage (the solid squares indicate the maximum singlemode emitted power)

Figure 5: peak current and avg power vs LDD voltage (including the multimode region)
Figure 6: spectra from -30°C to 30°C for various LDD voltages

Figure 7: spectra at -30°C for various LDD voltages (mode jumping at 19.5V)
Figure 8: spectra at -20C for various LDD voltages (bimode)

Figure 9: spectra at -10C for various LDD voltages
Figure 10: spectra at 0°C for various LDD voltages (bimode)

Figure 11: spectra at 10°C for various LDD voltages (bimode)
Figure 12: spectra at 20°C for various LDD voltages (mono at threshold)

Figure 13: spectra at 30°C for various LDD voltages (mono at threshold)