Recommendations:

Please read the starter kit user manual, if available, and have a look at the FAQ at http://www.alpeslasers.ch/alfaq.pdf

WARNING: Operating the laser with longer pulses, higher repetition rate, higher voltage or higher current than specified in this document may cause damage. It will result in loss of warranty, unless agreed upon with Alpes Lasers!

WARNING: Beware of the polarity of the laser. This laser has to be powered with negative bias on the laser contact (= bonding pad, corresponding to the label "laser" on the LLH) and the positive bias on the base contact (= submount, corresponding to the label "base" on the LLH).

Figure 1: Support mounting for #sb3424 UP (please note that the laser is connected to the UP pad drawn in blue)
Figure 2: Output power as a function of the singlemode emission frequencies and temperatures

Figure 3: DC voltage fed to LDD (Uldd) as a function of the singlemode emission frequencies and temperatures
Table 1: singlemode optical output power as function of operating parameters

<table>
<thead>
<tr>
<th>λ [nm]</th>
<th>ν [cm$^{-1}$]</th>
<th>P [mW]</th>
<th>Temp [$^\circ$C]</th>
<th>U_{LDD} [V]</th>
<th>I_{pulse} [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4516.1</td>
<td>2214.3</td>
<td>0.1</td>
<td>-30</td>
<td>10</td>
<td>0.24</td>
</tr>
<tr>
<td>4517</td>
<td>2213.9</td>
<td>0.8</td>
<td>-30</td>
<td>12.5</td>
<td>0.57</td>
</tr>
<tr>
<td>4527</td>
<td>2209</td>
<td>0.1</td>
<td>0</td>
<td>9</td>
<td>0.17</td>
</tr>
<tr>
<td>4527.2</td>
<td>2208.9</td>
<td>0.1</td>
<td>0</td>
<td>10</td>
<td>0.28</td>
</tr>
<tr>
<td>4527.5</td>
<td>2208.7</td>
<td>0.1</td>
<td>0</td>
<td>11</td>
<td>0.4</td>
</tr>
<tr>
<td>4527.8</td>
<td>2208.6</td>
<td>0.3</td>
<td>0</td>
<td>12</td>
<td>0.53</td>
</tr>
<tr>
<td>4528.1</td>
<td>2208.4</td>
<td>0.7</td>
<td>0</td>
<td>13</td>
<td>0.65</td>
</tr>
<tr>
<td>4532.6</td>
<td>2206.3</td>
<td>0.1</td>
<td>16</td>
<td>9.5</td>
<td>0.24</td>
</tr>
<tr>
<td>4532.7</td>
<td>2206.2</td>
<td>0.1</td>
<td>16</td>
<td>10</td>
<td>0.3</td>
</tr>
<tr>
<td>4532.9</td>
<td>2206.1</td>
<td>0.1</td>
<td>16</td>
<td>11</td>
<td>0.42</td>
</tr>
<tr>
<td>4533.2</td>
<td>2205.9</td>
<td>0.3</td>
<td>16</td>
<td>12</td>
<td>0.55</td>
</tr>
<tr>
<td>4533.6</td>
<td>2205.8</td>
<td>0.5</td>
<td>16</td>
<td>13</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Figure 4: peak voltage and average power vs peak current at 2% duty-cycle (50ns pulses on the laser, 2.5μs period) (the solid squares indicate the maximum singlemode emitted power)
Figure 5: peak current and average power vs LDD voltage at 2% duty-cycle (50ns pulses on the laser, 2.5µs period) (the solid squares indicate the maximum singlemode emitted power)
Figure 4: Spectra at different temperatures for various LDD voltages (22ns pulses, 1.1us period)
Figure 6: peak voltage and average power vs peak current at 16C for various duty-cycles (100ns pulses on the laser) (the solid squares indicate the maximum singlemode emitted power)

Figure 7: peak current and average power vs LDD voltage at 16C for various duty-cycles (100ns pulses on the laser) (the solid squares indicate the maximum singlemode emitted power)
Figure 8: spectra at 16C at 6% duty-cycle for various LDD voltages