Datasheet for #sb479 DN

Recommendations:

Please read the starter kit user manual (at least installation chapter 5), if available, and have a look at the FAQ at http://www.alpeslasers.ch/alfaq.pdf

WARNING: Operating the laser with longer pulses, shorter period, or higher voltage or current than specified in this document may cause damage and will result in loss of warranty, unless agreed upon with Alpes Lasers!

WARNING: Beware of the polarity of the laser. This laser has to be powered with negative bias on the laser contact (= bonding pad, corresponding to the label ”laser” on the LLH) and the positive bias on the base contact (= submount, corresponding to the label ”base” on the LLH).

Figure 1: Support mounting for #sb479 DN (please note that the laser is connected to the DN pad drawned in blue)
Figure 2: Output power as a function of the singlemode emission frequencies and temperatures

Figure 3: DC voltage fed to LDD (Ulld) as a function of the singlemode emission frequencies and temperatures
λ[nm] ν[cm$^{-1}$] P[mW] Temp[°C] U_{LDD}[V] I_{pulse}[A]

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10341.6</td>
<td>967</td>
<td>0</td>
<td>-30</td>
<td>8.5</td>
<td>1.44</td>
</tr>
<tr>
<td>10343.2</td>
<td>966.8</td>
<td>0.3</td>
<td>-30</td>
<td>10</td>
<td>1.76</td>
</tr>
<tr>
<td>10352.9</td>
<td>965.9</td>
<td>0</td>
<td>-15</td>
<td>9</td>
<td>1.56</td>
</tr>
<tr>
<td>10354</td>
<td>965.8</td>
<td>0.2</td>
<td>-15</td>
<td>10</td>
<td>1.77</td>
</tr>
<tr>
<td>10355.1</td>
<td>965.7</td>
<td>0.6</td>
<td>-15</td>
<td>11</td>
<td>1.98</td>
</tr>
<tr>
<td>10364</td>
<td>964.9</td>
<td>0.1</td>
<td>0</td>
<td>9.5</td>
<td>1.67</td>
</tr>
<tr>
<td>10365.3</td>
<td>964.8</td>
<td>0.2</td>
<td>0</td>
<td>10.5</td>
<td>1.89</td>
</tr>
<tr>
<td>10366.6</td>
<td>964.6</td>
<td>0.7</td>
<td>0</td>
<td>11.5</td>
<td>2.11</td>
</tr>
</tbody>
</table>

Table 1: singlemode optical output power as function of operating parameters

Figure 4: peak voltage and average power vs peak current at 2% dc (the solid squares indicate the maximum singlemode emitted power)
Figure 5: peak voltage and average power vs peak current at 2% dc (including the multimode region)

Note: data taken with 50ns pulses, 2.5µs period.

Figure 6: peak current and average power vs LDD voltage at 2% dc (the solid squares indicate the maximum singlemode emitted power)
Figure 7: peak current and average power vs LDD voltage at 2% dc (including the multimode region)

Figure 8: spectra at -30C, -15C, 0C, 15C and 30C at 2% dc for various LDD voltages
Figure 9: spectra at -30C for various LDD voltages (small mode around 10318 nm)

Figure 10: spectra at -30C for various LDD voltages (monomode range)
Figure 11: spectra at -15°C for various LDD voltages

Figure 12: spectra at -15°C for various LDD voltages (monomode range)
Figure 13: spectra at 0C for various LDD voltages

Figure 14: spectra at 0C for various LDD voltages (monomode range)
Figure 15: spectra at 15C for various LDD voltages (all multimode)

Figure 16: spectra at 30C for various LDD voltages (all multimode)