Datasheet for #sbcw11714 DN

Recommendations:

Please read the User Manual and have a look at the FAQ at http://www.alpeslasers.ch/?a=142

WARNING: Operating the laser with higher current or voltage than specified in this document may cause damage and will result in loss of warranty, unless Alpes Lasers has permitted to do so!

WARNING: Beware of the polarity of the laser. This laser has to be powered with negative bias and positive bias on the specific zones drawn below. To use with an ILX Lightwave LDX-3232 laser driver, or equivalent.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive bias (laser)</td>
<td></td>
</tr>
<tr>
<td>Negative bias (laser)</td>
<td></td>
</tr>
<tr>
<td>Thermistor zone</td>
<td></td>
</tr>
<tr>
<td>Thermistor contacts</td>
<td></td>
</tr>
<tr>
<td>Do not use (wire-bonding)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Support mounting for #sbcw11714 DN (please note that AlN submount numbering is A06X7)
Figure 2: Output power as a function of the singlemode emission frequencies and temperatures

Figure 3: Applied DC current as a function of singlemode emission frequencies and temperatures
<table>
<thead>
<tr>
<th>λ[nm]</th>
<th>ν[cm$^{-1}$]</th>
<th>P[mW]</th>
<th>Temp[°C]</th>
<th>U_{LASER}[V]</th>
<th>I[A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9641.5</td>
<td>1037.2</td>
<td>0.6</td>
<td>-30</td>
<td>9.3</td>
<td>0.13</td>
</tr>
<tr>
<td>9644.1</td>
<td>1036.9</td>
<td>11.4</td>
<td>-30</td>
<td>9.6</td>
<td>0.16</td>
</tr>
<tr>
<td>9646.8</td>
<td>1036.6</td>
<td>21.8</td>
<td>-30</td>
<td>10</td>
<td>0.18</td>
</tr>
<tr>
<td>9649.6</td>
<td>1036.3</td>
<td>30.3</td>
<td>-30</td>
<td>10.3</td>
<td>0.2</td>
</tr>
<tr>
<td>9652.9</td>
<td>1036</td>
<td>37.5</td>
<td>-30</td>
<td>10.7</td>
<td>0.23</td>
</tr>
<tr>
<td>9656.6</td>
<td>1035.6</td>
<td>43.5</td>
<td>-30</td>
<td>11</td>
<td>0.25</td>
</tr>
<tr>
<td>9660.5</td>
<td>1035.1</td>
<td>47.9</td>
<td>-30</td>
<td>11.4</td>
<td>0.27</td>
</tr>
<tr>
<td>9650.1</td>
<td>1036.3</td>
<td>0.4</td>
<td>-20</td>
<td>9.3</td>
<td>0.15</td>
</tr>
<tr>
<td>9654.3</td>
<td>1035.8</td>
<td>15</td>
<td>-20</td>
<td>9.8</td>
<td>0.18</td>
</tr>
<tr>
<td>9657.5</td>
<td>1035.5</td>
<td>24.3</td>
<td>-20</td>
<td>10.2</td>
<td>0.2</td>
</tr>
<tr>
<td>9660.9</td>
<td>1035.1</td>
<td>31.6</td>
<td>-20</td>
<td>10.6</td>
<td>0.23</td>
</tr>
<tr>
<td>9664.5</td>
<td>1034.7</td>
<td>37</td>
<td>-20</td>
<td>10.9</td>
<td>0.25</td>
</tr>
<tr>
<td>9668.4</td>
<td>1034.3</td>
<td>41.2</td>
<td>-20</td>
<td>11.3</td>
<td>0.27</td>
</tr>
<tr>
<td>9659.8</td>
<td>1035.2</td>
<td>0.7</td>
<td>-10</td>
<td>9.5</td>
<td>0.16</td>
</tr>
<tr>
<td>9662</td>
<td>1035</td>
<td>7.8</td>
<td>-10</td>
<td>9.7</td>
<td>0.18</td>
</tr>
<tr>
<td>9665.2</td>
<td>1034.6</td>
<td>16.7</td>
<td>-10</td>
<td>10.1</td>
<td>0.2</td>
</tr>
<tr>
<td>9668.8</td>
<td>1034.3</td>
<td>24.1</td>
<td>-10</td>
<td>10.4</td>
<td>0.23</td>
</tr>
<tr>
<td>9672.5</td>
<td>1033.9</td>
<td>30.2</td>
<td>-10</td>
<td>10.8</td>
<td>0.25</td>
</tr>
<tr>
<td>9676.7</td>
<td>1033.4</td>
<td>34.6</td>
<td>-10</td>
<td>11.1</td>
<td>0.27</td>
</tr>
<tr>
<td>9669.4</td>
<td>1034.2</td>
<td>0.5</td>
<td>0</td>
<td>9.6</td>
<td>0.18</td>
</tr>
<tr>
<td>9673.2</td>
<td>1033.8</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>9676.8</td>
<td>1033.4</td>
<td>17.4</td>
<td>0</td>
<td>10.3</td>
<td>0.23</td>
</tr>
<tr>
<td>9680.6</td>
<td>1033</td>
<td>23.4</td>
<td>0</td>
<td>10.7</td>
<td>0.25</td>
</tr>
<tr>
<td>9685</td>
<td>1032.5</td>
<td>28.2</td>
<td>0</td>
<td>11</td>
<td>0.27</td>
</tr>
<tr>
<td>9672.9</td>
<td>1033.8</td>
<td>0.2</td>
<td>5</td>
<td>9.6</td>
<td>0.18</td>
</tr>
<tr>
<td>9676.8</td>
<td>1033.4</td>
<td>8.7</td>
<td>5</td>
<td>10</td>
<td>0.21</td>
</tr>
<tr>
<td>9680.9</td>
<td>1033</td>
<td>16</td>
<td>5</td>
<td>10.4</td>
<td>0.23</td>
</tr>
<tr>
<td>9685.6</td>
<td>1032.5</td>
<td>22</td>
<td>5</td>
<td>10.8</td>
<td>0.26</td>
</tr>
<tr>
<td>9678.6</td>
<td>1033.2</td>
<td>0.5</td>
<td>10</td>
<td>9.7</td>
<td>0.19</td>
</tr>
<tr>
<td>9681</td>
<td>1033</td>
<td>5.6</td>
<td>10</td>
<td>10</td>
<td>0.21</td>
</tr>
<tr>
<td>9685.3</td>
<td>1032.5</td>
<td>13.2</td>
<td>10</td>
<td>10.4</td>
<td>0.24</td>
</tr>
<tr>
<td>9690</td>
<td>1032</td>
<td>19.1</td>
<td>10</td>
<td>10.8</td>
<td>0.26</td>
</tr>
<tr>
<td>9693.6</td>
<td>1031.6</td>
<td>21.7</td>
<td>10</td>
<td>10.9</td>
<td>0.27</td>
</tr>
<tr>
<td>9683.9</td>
<td>1032.6</td>
<td>0.5</td>
<td>15</td>
<td>9.8</td>
<td>0.2</td>
</tr>
<tr>
<td>9689.4</td>
<td>1032.1</td>
<td>10</td>
<td>15</td>
<td>10.3</td>
<td>0.24</td>
</tr>
<tr>
<td>9694.1</td>
<td>1031.6</td>
<td>16.1</td>
<td>15</td>
<td>10.7</td>
<td>0.26</td>
</tr>
<tr>
<td>9690.7</td>
<td>1031.9</td>
<td>0.4</td>
<td>20</td>
<td>9.9</td>
<td>0.21</td>
</tr>
<tr>
<td>9693.2</td>
<td>1031.7</td>
<td>4.6</td>
<td>20</td>
<td>10.1</td>
<td>0.23</td>
</tr>
<tr>
<td>9697.4</td>
<td>1031.2</td>
<td>10.7</td>
<td>20</td>
<td>10.5</td>
<td>0.25</td>
</tr>
<tr>
<td>9702</td>
<td>1030.7</td>
<td>15.4</td>
<td>20</td>
<td>10.8</td>
<td>0.27</td>
</tr>
<tr>
<td>9702.6</td>
<td>1030.7</td>
<td>0.6</td>
<td>30</td>
<td>10.1</td>
<td>0.23</td>
</tr>
<tr>
<td>9705.9</td>
<td>1030.3</td>
<td>4.7</td>
<td>30</td>
<td>10.4</td>
<td>0.25</td>
</tr>
<tr>
<td>9710.8</td>
<td>1029.8</td>
<td>9.4</td>
<td>30</td>
<td>10.8</td>
<td>0.27</td>
</tr>
<tr>
<td>9715.7</td>
<td>1029.3</td>
<td>0.3</td>
<td>40</td>
<td>10.4</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Table 1: Singlemode optical output power as function of operating parameters.
Figure 4: voltage and avg power vs current in continuous-wave operation (the solid squares indicate the maximum singlemode emitted power)

Note: at -30°C: Ith=0.13A / Vth=9.2V (2-wires measurements). Maximum operation current: 0.275A for all temperatures.
Figure 3: Spectra at different temperatures for various DC currents.